Extremal Zagreb Indices of Graphs with a Given Number of Cut Edges
نویسندگان
چکیده
For a graph, the first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Denote by Gn,k the set of graphs with n vertices and k cut edges. In this paper, we showed the types of graphs with the largest and the second largest M1 and M2 among Gn,k .
منابع مشابه
Leap Zagreb indices of trees and unicyclic graphs
By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...
متن کاملNote on multiple Zagreb indices
The Zagreb indices are the oldest graph invariants used in mathematical chemistry to predict the chemical phenomena. In this paper we define the multiple versions of Zagreb indices based on degrees of vertices in a given graph and then we compute the first and second extremal graphs for them.
متن کاملOn the Maximum Zagreb Indices of Graphs with k Cut Vertices
For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M2 is equal to the sum of products of degrees of pairs of adjacent vertices. In this paper, we study the Zagreb indices of n-vertex connected graphs with k cut vertices, the upper bound for M1and M2-values of n-vertex connected graphs with k cut vertices are deter...
متن کاملZagreb, Harary and hyper-Wiener indices of graphs with a given matching number
In this paper, we present sharp bounds for the Zagreb indices, Harary index and hyperWiener index of graphs with a given matching number, and we also completely determine the extremal graphs. © 2010 Elsevier Ltd. All rights reserved.
متن کاملThe Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 30 شماره
صفحات -
تاریخ انتشار 2014